ارزیابی دقت برآورد میزان انتقال رسوب معلق در سدهای مخزنی توسط سیستم استنتاج فازی- عصبی وشبکه عصبی مصنوعی (مطالعه موردی :رودخانه سفیدرود-استان گیلان)
Authors
Abstract:
در تحقیق حاضر، هدف مقایسه تخمین بار رسوب معلق در سدهای مخزنی با استفاده از شبکه عصبی مصنوعی و سیستم استنتاج فازی- عصبی می باشد. بررسیها توسط برنامه MATLAB انجام شده است و ورودی ها شامل دبی رودخانه سفید رود و خروجی، غلظت رسوب در گام زمانی بوده است.ورودی و خروجی رسوب دارای روند مثبت بوده و 80 درصد داده ها جهت آموزش و 20 درصد داده ها جهت آزمون شبکه مورد استفاده قرار گرفت. از تعداد 229 داده موجود 182 داده به عنوان داده های آموزشی و 47 داده برای آزمون بکار برده شده است.. نتایج بدست آمده نشان می دهند که پیش بینی غلظت بار معلق رسوب حاصل از مدل سیستم استنتاج فازی- عصبی به داده های واقعی غلظت رسوب نزدیک تر هستند و ضریب همبستگی حاصل از سیستم استنتاج فازی- عصبی 90 درصد می باشد. این در حالی است که ضریب همبستگی برای مدل های شبکه عصبی مصنوعی 83 درصد بدست آمده است. لذا سیستم استنتاج فازی- عصبی در پیش بینی میزان رسوب معلق نسبت به مدل شبکه عصبی مصنوعی دارای کارایی بهتری می باشد.
similar resources
تاثیر توزیعهای احتمالاتی در افزایش دقت پیشبینی رسوب معلق با استفاده از شبکههای عصبی مصنوعی و سیستم استنتاج فازی-عصبی(مطالعه موردی: حوزه آبخیز سد دز)
توجه به ماهیت دادههای رسوب و انتخاب روشهای مناسب پردازش بر روی دادهها قبل از ورود به مدلهای هوش مصنوعی از جمله مواردی است که میتواند نتایج حاصل از شبیهسازیها را به واقعیت نزدیک سازد. در این تحقیق تأثیر روشهای پردازش دادههای رسوب قبل از ورود به دو مدل شبکههای عصبی مصنوعی و سیستمهای استنتاج فازی-عصبی در هفت ایستگاه حوضه سد دز مورد بررسی قرار گرفته است. بر این اساس با توجه به توزیعهای ...
full textبررسی امکان کاربرد سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) در برآورد بار رسوب معلق بابلرود
Sediment load estimation is one of the most important issues in rivers & dam reservoirs management and generally in water projects. Various empirical equations show that proper analytical or empirical method is not suggested for correct estimation of suspended sediment, yet. In the present study, to assessment of closer estimation to actual data of transported sediment in Ghoran Talar station l...
full textمقایسه روشهای شبکه های عصبی مصنوعی، فازی-عصبی تطبیقی و منحنی سنجه رسوب در برآورد رسوبات معلق رودخانه ها (مطالعه موردی: رودخانه آجی چای)
ارائه راهکاری مناسب جهت برآورد دقیق بار معلق رودخانهها در پروژههای آبی، مهندسی رودخانه و آبیاریکاربردهای فراوانی دارد. به دلیل تأثیر پارامترهای مختلف بر انتقال رسوبات در رودخانهها، تعیین معادلات حاکم برآن مشکل بوده و مدلهای ریاضی نیز در این راستا از دقت کافی برخوردار نیستند. امروزه استفاده از سیستمهایهوش مصنوعی به عنوان راهکاری جدید در تحلیل مسائل آبی، گسترش یافته است. در تحقیق حاضر منطق فازی-ع...
full textبررسی امکان کاربرد سیستم استنتاج فازی- عصبی تطبیقی (anfis) در برآورد بار رسوب معلق بابل رود
برآورد بار رسوبی یکی از مهمترین مسائلی است که در مدیریت رودخانه ها و مخازن سدها و به طور کلی در پروژه های آبی اهمیت بسزائی دارد. تعداد روابط تجربی ارائه شده نشان می دهد هنوز روش تحلیلی یا تجربی مناسبی برای تخمین صحیح بار رسوب معلق پیشنهاد نشده است. در پژوهش حاضر، به منظور دستیابی به تخمینی نزدیک به واقعیت از میزان حمل رسوبات ایستگاه قرآن تالار بابلرود، از سیستم استنتاج فازی- عصبی تطبیقی ( anf...
full textبرآورد رسوب معلق با استفاده از شبکه عصبی و ارزیابی توابع آموزشی(مطالعه موردی: استان لرستان)
full text
مقایسه میزان کارآیی شبکه عصبی مصنوعی و مدلهای رگرسیونی، منحنیسنجه رسوب در برآورد رسوب معلق روزانه
تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...
full textMy Resources
Journal title
volume 5 issue 18
pages 49- 55
publication date 2019-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023